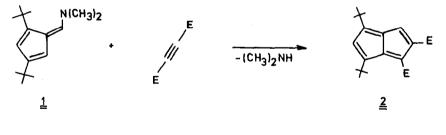
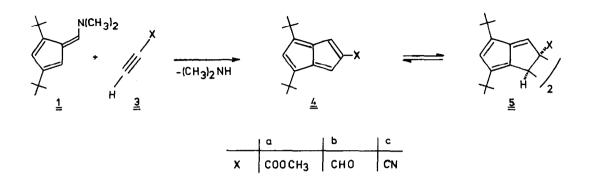
Tetrahedron Letters No. 28, pp 2449 - 2452, 1977. Pergamon Press. Printed in Great Britain.


SYNTHESES OF 4.6-DI-TERT,-BUTYL-PENTALENE DERIVATIVES AND THEIR REVERSIBLE DIMERIZATION

Minoru Suda and Klaus Hafner


Institut für Organische Chemie der Technischen Hochschule Darmstadt (Germany)

(Received in UK 18 March 1977; accepted for publication 2 June 1977)

Recently we reported a facile synthesis of the thermally stable pentalene derivative 2 from easily available 1.3-di-tert.-butyl-6-dimethylaminofulvene 1 and dimethyl acetylenedicarboxylate^[1]. In the course of further investi-

gations about the scope and limitations of this new synthetic scheme we have found, that $\underline{1}$ reacts in a similar way with acetylenes $\underline{3}$, possessing only one electron-withdrawing group, by formation of the pentalenes $\underline{4a} - \underline{4c}$. Contrary to $\underline{2}$, however, the pentalenes $\underline{4a} - \underline{4c}$ are at room temperature in equilibrium with their dimers $\underline{5a} - \underline{5c}^{[2]}$. When $\underline{1}$ is treated with methyl propiolate $\underline{3a}$ (45° C, 18 h), propiolaldehyde $\underline{3b}$ (0° C, 10 min) or cyanoacetylene $\underline{3c}$ (-20° C, 30 min) one obtains after chromatography on silica gel

yellow crystals of 5a (58 %; m.p. 135 - 136°C), 5b (48 %; m.p. 84 - 85°C), and 5c (45 %; m.p. 153 - 154 °C)^[3]. Upon dissolving these pentalene dimers in organic solvents one observes a color change of the solution from yellow to green. This change could be monitored quantitatively by nmr and uv-visible spectroscopy and is due to a reversible dissociation of 5 to the corresponding monomeric pentalenes 4. Removal of the solvent regenerates pure yellow crystals of 5.

Respective nmr spectra of a mixture of $\frac{4}{2}$ and $\frac{5}{2}$ as well as uv-visible spectra of almost pure monomer in a diluted solution ($10^{-3} - 10^{-5}$ M) and of pure dimer by low temperature measurements could be obtained (except <u>5</u>b) (Table 1).

The equilibrium constant $K=[4a]^2/[5a]$ (mol/1) at about 40°C, obtained by the peak area measurement method utilizing nmr spectroscopy, shows no correlation with solvent polarity [K = 0.04 (benzene-d₆), 0.05 (CS₂), 0.02 (CCl₄), 0.10 (CDCl₃) and 0.06 (CH₂Cl₂)]. A first order rate constant for this dissociation reaction was established by uv-visible spectroscopy (in CH₂Cl₂ and n-hexane). The activation energy was determined to E_a = 22.8 ± 1 kcal/mol in CH₂Cl₂ and 20.3 ± 1 kcal/mol in n-hexane. According to this 5a dissociates faster in n-hexane than in methylene chloride. In case of the pentalene aldehyde $\frac{4b}{2}$ the equilibrium is displaced so far to the side of the monomer that no spectroscopic data could be obtained for the dimer $\frac{5b}{2}$. On the other hand, when a concentrated solution of $\frac{4b}{2}$ was kept at 25°C for one week, a second yellow crystalline dimer $\frac{6b}{2}$ (m.p. 170 - 173°C) was isolated in 37 % yield, whose structure was established by spectroscopic and analytical means. Like the previously described dimers of alkylated pentalenes ^[4,5], this dimer does not dissociate thermally to $\frac{4b}{2}$.

The dissociation of $\frac{5}{2}$ to $\frac{4}{2}$ is faster than that of $\frac{5}{2}$, but slower than that of $\frac{5}{2}$. The equilibrium constant K at 40° C in CDCl₃ was determined to o.16 mol/1. After one month at 25° C $\frac{4}{2}$ forms yet another non-equilibriated

dimer $\underline{7c}$, the first example for the formation of a "head-to-tail" dimer in this series of pentalene dimers. The stereochemistry of $\underline{7c}$ was deduced from its nmr and uv spectra.

These results show, that both the equilibrium constants and the rate constants of the dissociation reaction of $\frac{5}{2} \rightleftharpoons \frac{4}{2}$ depend on the electron withdrawing group and decrease in the following order $-CO_2CH_3 \gg -CN > CHO$.

compound	l H-nmr spectra (60 MHz, TMS-internal standard)	uv-visible spectra (\ _{max} (nm)(loge)
<u>4a</u>	1.01(18H,s), 3.67(3H,s), 4.85(1H,s), 5.97(2H,s)	736 (2.35) ^{b)} 677 (2.35) 358 (3.66) 265 (4.28)
<u>5a</u>	1.24(18H,s), 3.7o(3H,s), 3.49(1H,s), 6.4o(1H,s), 6.45(1H,s) ^a)	416 (3.23) ^{c)} 260 (4.27)
<u>4b</u>	1.06(18H,s), 5.00(1H,s), 6.10(2H,s), 9.18(1H,s)	703 (2.45) ^{d)} 666 (2.46) 354 (3.62) 277 (4.31) 231 (4.07)
<u>4c</u>	1.oo(18H,s), 4.92(1H,s), 5.75(2H,s) ^{e)}	744 (2.43) ^{b)} 678 (2.43) 357 (3.70) 252 (4.36)
<u>5c</u>	1.21(9H,s), 1.29(9H _e s), 3.61(1H,s), 6.49 (1H,s), 6.56(1H,s)	417 (3.19) ^{f)} 254 (4.29)
<u>6b</u>	1.10(9H,s), 1.20(9H,s), 4.20(1H,s), 6.30(1H,s), 6.38(1H,s), 9.90(1H,s) a)	395 (3.13) ^{d)} 258 (4.30)
<u>7c</u>	0.92(9H,s), 1.20(9H,s), 1.28(9H,s),	

Spectroscopic Data

 /c
 0.92(9H,8), 1.20(9H,8), 1.20(9H,8),

 1.42(9H,s), 3.30(1H,d, J=5Hz), 3.58(1H,d,

 J=5Hz), 6.43(1H,s), 6.49(1H,d,J=1Hz),

 6.60(1H,s), 7.02(1H,d,J=1Hz)

a) in CDCl₃; b) in CH_2Cl_2 ; c) in CH_2Cl_2 at $-16^{\circ}C$; d) in hexane; e) in CD_2Cl_2 , as a mixture; f) in CH_2Cl_2 at $-40^{\circ}C$.

Support of this work by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Alexander von Humboldt-Stiftung is gratefully acknowledged.

REFERENCES

- K. Hafner and M. Suda, <u>Angew. Chem.</u> 88, 341 (1976), <u>Angew. Chem. Int. Ed. Engl.</u> 15, 314 (1976).
- [2] The anti-cis-configuration of 5 is likely by comparison of their uv spectra with those of alkylated pentalene dimers, whose stereochemistry has been established^[4].
- [3] All new compounds gave correct elementary analyses.
- [4] K. Hafner, R. Dönges, E. Goedecke and R. Kaiser, <u>Angew. Chem. 85</u>, 362 (1973); <u>Angew.</u> <u>Chem. Int. Ed. Engl. 12</u>, 337 (1973); R. Dönges, K. Hafner u. H.J. Lindner, <u>Tetrahedron</u> <u>Lett. 1976</u>, 1345.
- [5] R.Bloch, R.A. Marty and P. deMayo, J. Amer. Chem. Soc. 93, 3071 (1971); Bull.Soc. Chim. Fr. 1972, 2031.